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ABSTRACT

Couchbase Capella is a scalable document-oriented database ser-

vice in the cloud. Its existing Capella Operational service is based

on a shared-nothing architecture and supports high volumes of low-

latency queries and updates for JSON documents. Its new Capella

Columnar cloud service complements the Operational service. The

Capella Columnar service supports complex analytical queries (e.g.,

ad hoc joins and aggregations) over large collections of JSON doc-

uments that can originate from a variety of Couchbase and non-

Couchbase data sources and formats and can either be stored and

managed by the Capella Columnar service or externally stored and

accessed on demand at query time. This paper describes the new

Capella Columnar service, looking both over and under the hood.
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1 INTRODUCTION

It has been more than �ve decades since Ted Codd changed the face

of data management with the introduction of the relational data

model [21]. Codd’s simple tabular view of data, related by values

instead of by pointers, made it possible to design declarative query

languages that enable business application developers and busi-

ness analysts to interact with their databases logically rather than

physically – specifying what data they want, rather than how to

retrieve it. The ensuing decades of research and industrial develop-

ment brought numerous innovations, including SQL [20], indexing,
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query optimization, parallel query processing, data warehouses,

and many other features that are now taken for granted in today’s

multibillion-dollar database industry. However, the world of data

and applications has changed since the days of mainframes and

attached terminals that were prevalent in Codd’s era.

The mission-critical applications of today demand support for

millions of interactions with end-users via the Web and mobile

devices, as well as the ability to quickly gain insights via a wide

variety of analyses of the data exhaust and other results of these

interactions. In contrast, relational database systems were initially

built for workloads involving thousands of users. Having been de-

signed to provide strict consistency and data control, they tend to

lack the required degrees of agility, �exibility, and scalability. As a

result, to handle a wide range of demanding use cases, many orga-

nizations end up deploying multiple types of databases, resulting

in a “database sprawl” that brings with it ine�ciencies, including

slow times to market, poor customer experiences, IT pain (e.g., due

to ETL), and for analytics, slow times to insight and intelligence.

Enter Couchbase Capella, which aims to reduce the degree of

database sprawl, to minimize the mismatch between an applica-

tion’s view of data and the persisted database state, and to do both

as a data management service in the cloud. Based on a declarative

SQL-like query language, namely SQL++ [16, 19, 27], its Capella

Operational service supports high volumes of low-latency query

and update operations over collections of JSON documents. Its new

Capella Columnar service, which is the focus of this paper, com-

plements the Operational service. It supports complex analytical

queries (ad hoc joins, aggregations, etc.) over large collections of

JSON documents that can originate from a variety of (Couchbase

and non-Couchbase) data sources, and its data can either be stored

and managed by the Capella Columnar service or stored externally

in object storage and accessed on demand at query time.

The rest of the paper is organized as follows: Section 2 discusses

Capella Columnar’s use of JSON as its core data model. Section 3

reviews the capabilities of the service and its conceptual architec-

ture. Section 4 describes the service’s user model. Section 5 looks

under the hood, o�ering a tour of the techniques and technologies

at work behind the scenes. Section 6 concludes the paper.

2 JSON AS A DATA MODEL

The data model for Couchbase Capella is JSON [8]. JSON itself is a

lightweight text-based data format with a simple speci�cation. By

design, JSON is a self-describing data format (no schema needed)



Figure 1: Overview of the Capella Columnar Service.

that is readable and writable by both humans and machines. Model-

wise, JSON objects are composed of primitive types, �exible records,

and arrays. JSON is in wide use for data exchange, for building and

invokingweb applications andweb-based services, and has emerged

as the defacto data format of choice for AI-infused applications.

Relational database systems are still the dominant technology

in the database market [29], but today’s applications are highly

demanding in terms of scale, performance, schema �exibility, and

online evolvability. The data that needs to be managed, in terms

of its variety and regularity (or lack thereof), has led to the rise of

NoSQL∗ database systems [18, 28, 29] and to document database sys-

tems in particular. Document databases are popular for the schema

�exibility that they o�er by supporting collections of semistructured

objects that can be nested, heterogeneous, and/or schemaless [28].

Most document databases have adopted JSON [8] as the data model,

including (in alphabetical order): Apache AsterixDB [3, 15], Cos-

mosDB [10], Couchbase [2, 7, 14, 26], DynamoDB [1, 24], and last

but certainly not least, MongoDB [9].

Given JSON’s popularity, and the explosion of AI-based appli-

cations that aim to analyze and generate intelligence from every

piece of available data, a vast amount of JSON data is in need of

storage and analysis. JSON is a natural �t for modeling nested ap-

plication objects like customers’ orders or shopping carts, and it is

now widely used for passing parameters and results when invoking

AI services. Perhaps of equal importance, JSON is capable of mod-

eling data coming from other, more rigid, sources. Relational tables

can be easily modeled as �at collections of JSON documents [19];

likewise for data in CSV or TSV �les. Data in nested schema-based

formats like Parquet or Avro can also be easily modeled as JSON

data. In essence, much of the world’s structured and semistructured

data can be neatly modeled by "putting on JSON glasses", including

the data resulting from the "database sprawl" mentioned earlier.

3 CAPELLA COLUMNAR OVERVIEW

The Capella Columnar service is a near-real-time, analytically-

oriented database service that has JSON as its core data model.

Couchbase previously had support for performing JSON analytics

[26], but it was limited to analyzing read-only shadow copies of

Couchbase-managed operational data. The new Capella Columnar

∗NoSQL initially stood for "no SQL", but today it is commonly said to be short for "not
only SQL".

service has a much richer set of features, as summarized in the

graphical overview of the new service in Figure 1.

The left side of Figure 1 shows the various possible data sources

for the Capella Columnar service. These include remote data being

streamed or bulk-copied from on-prem Couchbase Server clus-

ters, the Capella Operational service, relational databases (Postgres

and MySQL today, with SQL Server and Oracle coming soon), and

NoSQL databases (MongoDB, DynamoDB, with others like Cassan-

dra on the roadmap). Optimized access to data residing externally in

cloud object stores (Amazon S3, Google Cloud Storage, and Azure

Blob Storage) is also provided. From a query author’s standpoint,

externally resident data looks the same as internally managed data.

The middle of Figure 1 highlights the key features of Capella

Columnar’s database engine. The engine employs a columnar JSON

storage format to enable high-performance querying and analysis

of large JSON datasets. At rest, data resides in Columnar-managed

object storage, and the engine’s query runtime uses partitioned

parallelism (also known as massively parallel processing or MPP)

for its compute nodes. The architecture uses storage-compute sepa-

ration for scalability. The user language provided for querying and

manipulating JSON data is SQL++[16], an extension of SQL, and

query planning is performed by a cost-based optimizer (CBO).

The right-hand side of Figure 1 shows the various paths through

which queries from programmatic applications, interactive analysts,

and other users can interact with the Capella Columnar service.

These include popular BI tools for analysts, an SDK and other data

APIs for applications, and the Capella Columnar query workbench

UI for interactive SQL++ users, which also includes an LLM-based

assistant (Columnar iQ) for developing queries using English.

Before moving on, it is worth calling out which features are

new in terms of Couchbase’s support for JSON analytics. SQL++,

MPP execution, and support for BI tools existed in the previous

Couchbase Analytics service, but were limited to operating on (row-

based) copies of JSON collections managed by Couchbase Server’s

Data service or its Capella Operational equivalent. CBO and basic

access to external data that resides in object storage were also

available. Everything else in Figure 1 is new! That includes columnar

storage for JSON, compute-storage separation, column-aware CBO,

stream-based ingestion of data from non-Couchbase sources, and

path-optimized access to accelerate queries over external data.
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Figure 2: Columnar in the IT World.

Popping up a level, Figure 2 shows how Capella Columnar is

expected to �t into the IT architecture of a typical enterprise. In its

absence, analysts who need to query data coming frommultiple data

sources or multiple collections would typically have to wait for the

relevant data to periodically �nd its way into a data warehouse or

across a data lake. When Capella Columnar is added to the picture,

data can arrive in near-real-time streams and become instantly

available for analyses. Results from analyses can also be written

back to a Couchbase operational database or to object storage,

e.g., to support personalized web applications. Moreover, because

the data model of the service is JSON, the incoming data is not

required to undergo ETL-based �attening transformations – it can

be analyzed "as is" in its natural form. And, due to the schema

�exibility of JSON, data can �uidly evolve at its source(s) without

requiring IT sta� to plan and perform ALTER TABLE operations or

update ETL scripts. As a result, the incoming data is immediately

available for analysis and other applications. Finally, as hinted at

in the �gure, the iQ assistant in Columnar’s query workbench can

help data analysts through its support for text to SQL++ and text

to graphical visualization.

4 CAPELLA COLUMNAR USER MODEL

We now describe the Capella Columnar service as seen by data

analysts and other end users. Much more detail is available in [2].

4.1 Logical and Physical Resources

An organization wanting to use the Capella Columnar service for a

new JSON data analytics activity will start by choosing or creating a

Capella Columnar cluster (in the Capella cloud) with which to man-

age the activity’s data and run its analytical queries. The cluster’s

size, in terms of its initial number of nodes, is speci�ed at create

time but can be scaled up or down at any time later based on the

activity’s workload and its performance needs. Each node brings

with it a set of vCPUs (cores) as well as memory and NVRAM for

caching data. In essence, a cluster is a dedicated instance of the

Capella Columnar service and its underlying JSON database engine.

That is, a cluster is where the data arriving from the left side of

Figure 1 will live, and it is also an active entity to which query

requests coming from the right side of Figure 1 will be directed.

In addition to a Capella Columnar cluster, an important global

(cluster-wide) entity is a link to an outside data source. A link is an

entity that holds the authentication credentials that Capella Colum-

nar needs to connect to a remote or external data source. A remote

link holds credentials for a streaming data source, such as a Capella

Operational service instance, a remote Couchbase Server cluster,

or a Kafka-based data source. An external link holds credentials

needed to access data in an external object store. Creation of clus-

ters, remote links, and external links are handled by the Couchbase

Capella UI or by a REST API call. (SQL++ DDL statements exist to

create links, but they are not documented and enabled for end users

because link creation requests include security-related information

that should not be exposed in plaintext form.)

4.2 Databases, Scopes, and Collections

The data managed by a Capella Columnar cluster is logically orga-

nized into a hierarchical namespace made up of databases, scopes,

and collections. A cluster can host one or more databases, and a

database, in turn, can have one or more scopes to help organize

its collections, indexes, and functions. Collections are the contain-

ers for JSON objects and the targets for SQL++ queries. They can

contain JSON objects of any type, with no schema being requested

or required, but the collections that Columnar manages must have

a declared primary key �eld (or �elds) that is used to index and

hash partition its objects. (Auto-generated UUIDs are provided as

an option for collections whose objects lack a natural primary key.)

As we will see by example below, Columnar provides support for

several di�erent kinds of collections.

Figure 3 shows some objects from a simple example commerce

database based on extending a set of tutorial data from [19]. To

illustrate the integrative power of the Capella Columnar service,



customers:

{ "custid": "C13",

"name": "T. Cody",

"address": {

"street": "201 Main St.",

"city": "St. Louis, MO",

"zipcode": "63101" },

"rating": 750

},

{ "custid": "C31",

"name": "B. Pruitt",

"address": {

"street": "360 Mountain Ave.",

"city": "St. Louis, MO",

"zipcode": "63101" }

},

{ "custid": "C47",

"name": "S. Logan",

"address": {

"street": "Via del Corso",

"city": "Rome, Italy" },

"rating": 625

},

...

orders:

{ "orderno": 1002,

"custid": "C13",

"order_date": "2020-05-01",

"ship_date": "2020-05-03",

"items": [

{ "itemno": 460, "qty": 95,

"price": 29.99 },

{"itemno": 680, "qty": 150,

"price": 22.99 } ]

},

{ "orderno": 1003,

"custid": "C31",

"order_date": "2020-06-15",

"ship_date": "2020-06-16",

"items": [

{ "itemno": 120, "qty": 2,

"price": 88.99 },

{ "itemno": 460, "qty": 3,

"price": 29.99 } ]

},

{ "orderno": 1008,

"custid": "C13",

"order_date": "2020-10-13",

"items": [

{ "itemno": 460,"qty": 20,

"price": 29.99 } ]

},

...

products:

{ "itemno": 347,

"category": ["essentials"],

"name": "Beer Cooler Backpack",

"manuf": "Robo Brew",

"listprice": 25.95,

"kind": "electric",

"power": "D batteries"

},

{ "itemno": 375,

"category": ["music"],

"name": "Stratuscaster Guitar",

"manuf": "Fender Bender",

"listprice": 149.99

},

{ "itemno": 460,

"category": ["music", "clothing"],

"name": "Fender Bender T-Shirt",

"descrip": "Extra Large T-Shirt for 

Fender Bender fans",

"manuf": "Fender Bender",

"listprice": 34.99,

"kind": "clothing",

"size": "XL"

},

...

reviews:

{ "itemno": 193,

"name": "Super Stapler",

"rating": 5,

"comment": "This electric stapler is the bomb",

"custid": "C41",

"rev_date": "2020-05-13"

},

{ "itemno": 347,

"name": "Beer Cooler Backpack",

"rating": 5,

"comment": "Every camper needs one of these for 

sure",

"custid": "C41",

"rev_date": "2020-05-13"

},

{ "itemno": 375,

"name": "Stratuscaster Guitar",

"rating": 4,

"comment": "Anxiously awaiting its arrival!",

"custid": "C37",

"rev_date": "2020-09-07"

},

...

Figure 3: Simple Commerce Data Example.

let us assume this data is from Ganges.com, a hypothetical startup

that wants to someday be the Amazon.com of India. Their online

store is backed by a Capella Operational database. Their product

inventory is stored in a corporate PostgreSQL database. Product

reviews, which are lower in value but higher in volume, are stored

in S3 for cost reasons. To enable analysts to integrate and utilize

all of this data in near real time, Ganges.com has chosen Capella

Columnar. They can start by creating a database (commerce) and

several scopes (websales, inventory, and marketing) to logically

group their collections.

To create the database, commerce, and its �rst scope, websales,

they can use the following DDL commands. Here we assume that

their Operational database is up and running and has a bucket

(which is like a database) with a scope containing their online

customers and orders collections. The AT clauses in the CREATE

COLLECTION statements refer to a link to the web store’s Op-

erational cluster; we assume this link was already created using

Columnar’s UI or REST-based management API.

-- websales (from Capella Operational):
CREATE DATABASE commerce;
CREATE SCOPE commerce.websales;
CREATE COLLECTION commerce.websales.customers

ON commerce_app_bucket.websales_scope.customers
AT sales_app_operational_cluster_link;

CREATE COLLECTION commerce.websales.orders
ON commerce_app_bucket.websales_scope.orders
AT sales_app_operational_cluster_link;

When executed, these commands will cause Columnar collec-

tions to be created and will start �ows of data which will then be

continually ingested (shadowed) in real time from Ganges’ online

store. Analysts can now write queries involving customers and

orders and they will always get current (e.g., up-to-the-minute)

answers.

Similarly, the following commands create the inventory scope

and products collection. Here, the data is coming from a PostgreSQL

table of Ganges’ products. In the previous case, the remote data was

in a Couchbase system, so shadowing will be handled transparently

using Couchbase’s database change protocol (DCP) [14, 26]. To

create shadow collections for non-Couchbase sources, such as Post-

greSQL, MySQL, MongoDB, or DynamoDB, the Capella Columnar

service makes use of Kafka [4]. As a result, the CREATE COLLEC-

TION statement below includes a link to a Kafka cluster and Kafka

topic that will have been created for the purpose of change data

capture (CDC) from the PostgreSQL products table. It also includes

details about the Kafka connector and names the �eld(s) to serve as

the Columnar collection’s primary key. (In the Couchbase-resident

case, Columnar knows what the remote primary key is, so it did

not need to be told in the CREATE COLLECTION statements.)
-- inventory (from PostgreSQL via Kafka):
CREATE SCOPE commerce.inventory;
CREATE COLLECTION commerce.inventory.products
PRIMARY KEY (itemno: int)
ON mysql_products_kafka_topic
AT my_kafka_cluster_link
WITH { "keySerializationType": "JSON",

"valueSerializationType": "JSON",
"cdcEnabled": "true",
"cdcDetails": {
"cdcSource": "POSTGRESQL",
"cdcSourceConnector": "DEBEZIUM"

}
};

Next, the following commands can be used to create the market-

ing scope and the reviews collection. Here, the desired data resides

in �les in an S3 bucket, so the CREATE COLLECTION statement

includes the S3 bucket and an S3 link. For the data itself, the path

to the data �les within the bucket, and also their �le format†, is

†Currently supported formats include JSON, CSV/TSV, Parquet, and Avro.



speci�ed. The resulting collection will now be queryable by an

analyst just as if the data were Columnar-resident, but in this case

the data will continue to live outside the service and be accessed

on demand (i.e., just in time) at query time, so a query will always

see the current state of the data in object storage‡.
-- marketing (external in S3):
CREATE SCOPE commerce.marketing;
CREATE EXTERNAL COLLECTION commerce.marketing.reviews

ON marketing_data_s3_bucket
AT my_s3_link
PATH "marketing/reviews"
WITH { "format": "parquet" };

Last but not least, Capella Columnar supports standalone collec-

tions. These are normal collections whose contents are managed

by the system and can be both queried and updated using SQL++.

It is important to note that the preceding collections – containing

data being shadowed from remote Couchbase or non-Couchbase

data sources, or living externally in an object store – will be read-

only (query-only) to Columnar users since they are intended to

accurately re�ect the current state of remote data and thus should

not be able to be modi�ed in Columnar. Standalone collections are

di�erent in this regard, as they can be updated in addition to being

queried. They are intended to be the property of user(s) needing

to create and manage their own data content. The following DDL

command shows how a standalone collection can be created by an

analyst getting ready to study a selected snapshot of the overall

collection of review data:
-- collection for review analyses
CREATE COLLECTION commerce.marketing.myReviews
PRIMARY KEY (id: int);

4.3 Queries and Updates

SQL++ [16] is the query language for Capella Columnar. It has been

implemented in the Apache AsterixDB project by committers from

both academia (UCI, UCR) and Couchbase. Here, we walk through

a set of examples to convey the nature of the language and the

power it o�ers for data from multiple sources. A brief tutorial on

SQL++ is included in [26], and a longer tutorial treatment of SQL++

for SQL developers can be found in [19].

To a �rst approximation, SQL++ is a superset of SQL, so it is easy

for SQL-savvy data analysts to learn SQL++. Our �rst example is

a SQL query that is also a SQL++ query. It counts the number of

orders placed by customers whose rating is over 500, grouped by

order date, for dates with one or more such orders.
-- �ery 1: SQL++ is like SQL
SELECT o.order_date, count(*) AS order_cnt
FROM commerce.websales.orders o,

commerce.websales.customers c
WHERE o.custid = c.custid AND c.rating > 500
GROUP BY o.order_date HAVING count(*) > 0
ORDER BY o.order_date DESC
LIMIT 3;

The relational model is �at, whereas JSON permits nested ob-

jects, nested arrays, variant and/or missing �elds, and more (see

Figure 3). SQL++ extends SQL to handle JSON’s richer structure.

The next query illustrates some of SQL++’s extensions. First, it

shows that one can write a SQL++ query starting with its FROM

clause and putting its SELECT clause where it should have been in

‡Currently supported object stores include AWS S3, storage appliances that emulate
S3, Google Cloud Storage (GCS), and Azure Blob Storage.

SQL, according to SQL’s inventor, Don Chamberlin [19] – after all

the referenced variables and �elds have been de�ned. Second, its

WHERE predicate shows how nested �eld values are accessed. Fi-

nally, its correlated subquery shows the use of the SELECT VALUE

clause in SQL++ to return scalar values instead of JSON objects,

and it shows that subqueries return arrays in SQL++ (rather than

returning a single scalar value as in SQL).

-- �ery 2: SQL++ extends SQL
USE commerce.websales;
FROM customers AS c
WHERE c.address.zipcode = "63101"
SELECT c.name,

( SELECT VALUE o.orderno FROM orders AS o
WHERE o.custid = c.custid ) as orders;

The actual JSON result from this query will look like:

[ { "name": "R. Dodge",
"orders": [1006, 1001] },
{ "name": "B. Prui�",
"orders": [1003] },
{ "name": "T. Cody",
"orders": [1002, 1009, 1008, 1007 ] } ]

The next example query creates a list of JSON objects with �elds

orderno, order_date, item_number, and quantity, and it shows how

SQL++ operates on nested arrays (e.g., with an existential predicate)

as well as making it possible to unnest them (e.g., by including

o.items in the FROM clause). An object will appear in the result for

each order-item pair where (1) the order (o) in the order-item pair

contains some line item with a quantity less than three and (2) the

item (i) in the order-item pair itself has a quantity over 100.

-- �ery 3: querying nested data
SELECT o.orderno, o.order_date,

i.itemno AS item_number, i.qty AS quantity
FROM commerce.websales.orders AS o, o.items AS i
WHERE (SOME li IN o.items SATISFIES li.qty < 3)
AND i.qty > 0

ORDER BY o.orderno, item_number;

Up to now our queries have been on data from Ganges’ online

store. The beauty of Columnar is that queries can combine data from

any/all of a cluster’s collections. Our last example query (for now)

illustrates this point by producing an activity pro�le for Ganges

customers residing in the U.S. (i.e., customers with a zipcode).

-- �ery 4: profile the U.S. customers
SELECT c.custid, c.name, c.address.zipcode,

(SELECT VALUE COUNT(*)
FROM commerce.websales.orders o
WHERE o.custid = c.custid)[0] AS order_cnt,
(SELECT COUNT(*) AS num_reviews,

AVG(r.rating) AS avg_rating
FROM commerce.marketing.reviews r
WHERE r.custid = c.custid)[0] AS reviews

FROM commerce.websales.customers AS c
WHERE c.address.zipcode IS NOT UNKNOWN;

Here is an example of an object from its results:

{ "custid": "C41",
"name": "R. Dodge",
"zipcode": "63101",
"order_cnt": 2,
"reviews": {"num_reviews": 3, "avg_rating": 4}

}

In addition to queries, of course, Columnar supports INSERT,

UPSERT, DELETE, and UPDATE operations for working with stan-

dalone collections. The following example creates a scratchpad

scope and a myCusts collection and INSERTs our pro�ling query’s

results into it for further analysis and/or manipulation:



CREATE SCOPE commerce.scratchpad;
CREATE COLLECTION commerce.scratchpad.myCusts

PRIMARY KEY (custid: string);
INSERT INTO commerce.scratchpad.myCusts
SELECT c.custid, c.name, c.address.zipcode,

(SELECT VALUE COUNT(*)
FROM commerce.websales.orders o
WHERE o.custid = c.custid)[0] AS order_cnt,
(SELECT COUNT(*) AS num_reviews,

AVG(r.rating) AS avg_rating
FROM commerce.marketing.reviews r
WHERE r.custid = c.custid)[0] AS reviews

FROM commerce.websales.customers AS c
WHERE c.address.zipcode IS NOT UNKNOWN;

An attempt to repeat the same INSERT would fail since objects

will exist in myCusts with con�icting primary keys. Changing

INSERT to UPSERT would allow a re-run, as UPSERT overwrites

existing data with incoming data when primary keys match. Note

that UPSERT works by inserting or overwriting whole objects. In

addition to UPSERT, Columnar supports UPDATE for making small

changes to existing data without requiring entire new object values

to be provided. For example, to simply update a city’s name:

UPDATE commerce.scratchpad.myCusts
SET address.city = "Saint Louis, MO"
WHERE address.city = "St. Louis, MO";

DELETE operations are also supported for standalone collections.

As an example, if a data analyst decided to exclude all St. Louis

customers from their data analysis for some reason, they could

delete them from their customer pro�le snapshot:

DELETE FROM commerce.scratchpad.myCusts
WHERE address.city = "St. Louis, MO";

It’s worth noting that SQL++’s mutation support for Capella

Columnar generalizes the familiar SQL UPDATE operation to work

on collections of nested objects by allowing nested INSERT, DELETE,

and UPDATE operations on nested array-valued �elds.

4.4 Views and User-De�ned Functions

In addition to queries and updates, Capella supports the creation

of both views and user-de�ned functions. Its views are similar to

relational views; they are de�ned using a SQL++ query and support

all of JSON’s potential for nesting and heterogeneity. Also supported

are two kinds of user-de�ned functions (UDFs). The �rst kind are

SQL++ UDFs, de�ned using a SQL++ query – they can be thought of

like parameterized views and they can be optimized when queried

by the query planner. The second kind of UDFs are Python UDFs,

which are implemented using Python and then registered with

Columnar. These external UDFs run in a fenced environment and

cannot access resources outside of that environment.

As a �rst example here, our customer pro�le query could be

used to de�ne a view that will then provide an up-to-date view of

Ganges’ customers’ activity levels whenever queried:

CREATE VIEW commerce.marketing.customerProfiles AS
SELECT c.custid, c.name, c.address.zipcode,

(SELECT VALUE COUNT(*)
FROM commerce.websales.orders o
WHERE o.custid = c.custid)[0] AS order_cnt,
(SELECT COUNT(*) AS num_reviews, AVG(r.rating) AS avg_rating
FROM commerce.marketing.reviews r
WHERE r.custid = c.custid)[0] AS reviews

FROM commerce.websales.customers AS c
WHERE c.address.zipcode IS NOT UNKNOWN;

As a second example, we can create a SQL++UDF that takes a cus-

tomer id as an argument, so that calling customerProfile("C41")

produces the customer activity pro�le shown earlier, as follows:

CREATE FUNCTION commerce.marketing.customerProfile(cid) {
SELECT VALUE c
FROM commerce.marketing.customerProfiles AS c
WHERE c.custid = cid

};

Columnar also allows a SQL++ UDF to be labeled as a transform

function (CREATE TRANSFORM FUNCTION) and referred to when

creating a shadow collection to apply lightweight transformations

(�ltering and/or projection) before depositing each incoming object.

This capability, think "ETL Lite", based on [25], is a novel feature

of Columnar’s incoming data pipelines and was requested by a

number of Couchbase customers.

We now turn to Columnar’s support for external functions,

namely Python UDFs. Let’s suppose that Ganges wants to run

analytical queries on reviews and their sentiments. If they had a

function sentiment(text) that returned a sentiment value ("posi-

tive", "neutral", or "negative") when passed a string, Ganges could

run the following query to see howmany reviews of each sentiment

the manufacturers of the products that they sell have had:

SELECT p.manuf AS mfg,
sentiment(r.comment) AS sent,
COUNT(*) AS num

FROM commerce.inventory.products p,
commerce.marketing.reviews r

WHERE r.itemno = p.itemno
GROUP BY p.manuf, sentiment(r.comment);

resulting in output like:

{"mfg": "Fender Bender", "sent": "negative","num": 3}
{"mfg": "Fender Bender", "sent": "neutral", "num": 2}
{"mfg": "O�ice Min", "sent": "positive", "num": 1}
{"mfg": "Robo Brew", "sent": "neutral","num": 1}
{"mfg": "Robo Brew", "sent": "positive", "num": 1}

But where can Ganges get such a function? Python UDFs to the

rescue! One approach that they could take would be to hand write a

function in Python, based on some knowledge of review wordings

(e.g., "It’s the bomb!"):

pos_words = ['bomb','needs']
neg_words = ['shrinks','shrunk', 'smaller']

def sentiment(arg)
words = arg.split()
if any(w in words for w in pos_words) and \
all(w not in words for w in neg_words):

return "positive"
if any(w in words for w in neg_words) and \
all(w not in words for w in pos_words):

return "negative"
return "neutral"

They would then add this new Python function to their cluster’s

UDF library registry. Libraries are UDFs with dependencies, and

they are uploaded to the cluster via a RESTful API similar to the

Links API. Once uploaded, libraries become catalog artifacts, and

the functions within them can be referenced in the DDL used to

create a UDF. For Python this requires a module name and either a

function or class and method name. To make this concrete, Ganges

could de�ne their sentiment function’s SQL++ signature and make

it available to be called in queries as follows:

CREATE FUNCTION sentiment(text)
AS "sentfuns"."sentiment" AT my_python_library;



COPY (

SELECT review, rating, year, 

quarter, month

FROM myReviews

) r

TO `myReviewsContainer`

AT `myExternalLink`

PATH("reviews", year, quarter, month)

OVER(

PARTITION BY r.year year,

r.quarter quarter,

r.month month

)

WITH {

"format": "json"

}

Figure 4: COPY TO for Object Storage.

While illustrative of what’s involved in using the Python UDF

facility for simple functions, a more realistic approach would be

either to (i) use a machine learning library to train a function on a

corpus of review test data and then add the trained function to the

library in a similar fashion, or (ii) acquire such a Python sentiment

function from an existing open source NLP library or from the

emerging LLM ecosystem.

4.5 Bulk Data Import/Export

So far we have seen how data in a Columnar collection can arrive

via incremental streaming or via INSERT or UPDATE statements.

Bulk exporting and importing of data are also supported.

As a data export example, suppose that a Ganges analyst had

created the standalone collection myReviews discussed at the end

of Section 4.2. Figure 4 shows an example of a SQL++ COPY TO

query that will export its data to an external object store. The data

being exported is from the internal collection myReviews, and in

addition to exporting the data, the novel OVER clause supported

in COPY TO statements structures the results in a form that will

be amenable to e�cient subsetting by subsequent queries – from

Columnar or from other engines with access to the data – over the

resulting S3-resident external data.

For data import, Columnar has a COPY INTO statement for

copying data in bulk from an external object store into a stan-

dalone collection. COPY INTO’s semantics are UPSERT-based, so

the copied objects will either replace existing objects with the same

primary keys or be added to the collection if no existing object with

the same key is present.

4.6 BI Tool Connectivity

Designed for data analysis use cases, the Capella Columnar service

includes support for data analysts who would like to use one of

several popular relational business intelligence (BI) tools to work

with their data. BI tool support is currently available for Tableau,

PowerBI, and Apache Superset. To enable "�at" relational tools to

work against JSON data, Columnar provides a novel tabular view

facility that lets power users de�ne interrelated SQL table-like views

(tabular views) on top of the database’s JSON collections. These

views can then be queried by regular business analysts, using their

favorite BI tools, as if they were actual SQL tables.

Figure 5 provides an overview of this tabular view facility. On

the right-hand side of the �gure we see customers, orders, and

products in JSON form, a form that a BI tool is not able to consume.

On the left, however, we see a set of SQL tables that represent the

same information – the tables are in 1NF, so orders and line items

now appear as separate tables related by order number. The tabular

view facility allows the actual collections on the right to be seen as

virtual SQL tables that a BI tool can understand.

Brie�y, how this works is that a CREATE VIEW statement for a

tabular view di�ers in two ways from the regular CREATE VIEW

DDL in Section 4.4: (1) Its de�nition speci�es a �at SQL schema (i.e.,

column names and data types) that it should appear to have. (2) Its

de�nition can include optional primary and foreign key information

that a BI tool can use to graphically guide users who need to query

and visualize joined data. A tabular view’s query body is written in

SQL++ and has the full power of the language to shape the view’s



addr_zipcodeaddr_cityaddr_streetratingnamecustid

63101St. Louis, MO201 Main St.750T. CruiseC13

..................

totalship_dateorder_datecustidorderno

10906.552017-05-032017-05-01C131002

...............

listpricemanufdescripnamecategoryitemno

29.95Robo BrewRobotic  ...Automatic Beer Openeressentials680

..................

{ "custid": "C13",

"name": "T. Cruise",

"address": { 

"street": "201 Main St.",

"city": "St. Louis, MO",

"zipcode": "63101" },

"rating": 750 },

&

{ "orderno": 1002,

"custid": "C13", 

"order_date": "2017-05-01",

"ship_date": "2017-05-03",

"items": [ { "itemno": 460, 

"qty": 95,

"price": 100.99

}, {

"itemno": 680, 

"qty": 150,

"price": 8.75

} ] },

&

{ "itemno": 680,

"category": "essentials", 

"name": "Automatic Beer Opener",

"description": "Robotic beer bottle opener",

"manuf": "Robo Brew",

"listprice": 29.95

},

&

item_priceitemqtyitemnoorderid

100.99954601002

8.751506801002

&.........

Figure 5: Tabular Views for BI Tools.

content into the desired �at form. Behind the scenes, the BI tools

talk to the Columnar service via JDBC or ODBC, and the Columnar

SQL++ query engine has a SQL compatibility mode that directs

it to interpret queries using SQL-92 semantics rather than SQL++

semantics (e.g., when interpreting subqueries).

4.7 Columnar Query Workbench and iQ

Last but not least, in terms of what a user of the Capella Columnar

service sees, is its Query Workbench and the LLM-based query and

charting assistant (iQ) that it o�ers. Figure 6 shows a screen shot.

On the left is information about the cluster’s databases, scopes, and

collections. On the right is the iQ panel. Above, in the middle, is the

query entry panel, and below it is the panel where query results are

displayed (with various options being available, e.g., JSON, tables,

charts, ...). In the iQ panel on the right hand side we see that the

user has selected two of the available collections (customers and

orders) and has asked iQ a query in English that it responded to

with a suggested SQL++ query that the user has then inspected (to

verify the query’s capture of their intention) and executed.

Figure 6: Columnar Workbench and iQ.



iQ bridges the gap between the user’s intended business question

and an executable query by converting natural language questions

to SQL++. Each LLM prompt from iQ includes the SQL++ dialect

preference (i.e., Capella Columnar or Capella Operational), exam-

ples of speci�c syntax like UDFs, and the inferred JSON schema of

the user-selected collections. For each LLM prompt, iQ also includes

information from the prior Q&A to create a conversational experi-

ence. If the compiler reports a syntax error for a generated SQL++

query, iQ feeds the error back to the LLM and retries, correcting

most defects transparently. After execution, iQ infers the schema

of the JSON result set, asks the LLM to suggest an appropriate

visualization, and renders the chart automatically. It also synthe-

sizes follow-up analytical questions and companion visualizations,

enabling iterative, natural language driven data analysis and explo-

ration. This is done sharing just the selected collections’ metadata,

i.e. without sharing any customer data with the LLM (openAI).

5 CAPELLA COLUMNAR UNDER THE HOOD

We now turn our attention under the hood to examine some of the

key technologies that underlie the Capella Columnar service.

5.1 Columnar Storage and Indexing

Figure 7 shows how the data for a JSON collection is organized

in a Capella Columnar cluster. Columnar’s data organization is

based on a combination of hash partitioning and compute-storage

separation. The disk icons in the �gure represent storage partitions,

and the dotted-line associations of these icons with the compute

nodes indicates which nodes are currently responsible for reading

and writing which partitions’ data. The objects in a collection are

assigned to partitions by hashing them based on the collection’s

speci�ed primary key. The data for each partition of a collection

resides in a set of interrelated log-structured merge (LSM) tree

indexes. The primary index contains the data objects themselves,

with zero or more secondary indexes serving to map the values of

an object’s other attributes (secondary keys) to the primary key to

speed the execution of selective queries.

Columnar’s memory is divided into a bu�er cache (for hold-

ing pages of on-disk components), ingestion memory (for hold-

ing pages of new in-memory components), and working memory

(which provides scratch pages for operators like joins). Like the

bu�er cache, the ingestion memory is a shared pool of pages. When

an in-memory component needs more space, it requests a page

from this shared pool. When usage exceeds a certain percentage of

the ingestion memory, one or more LSM �ushes are scheduled to re-

claim pages. Flushes are scheduled in a round-robin manner. When

a �ush is triggered for a collection, the in-memory components of

all its indexes are �ushed simultaneously; this aids in identifying

a shared rollback point across the collection’s indexes. Bloom �l-

ters are associated with primary index components to minimize

unsuccessful primary key lookups.

Figure 8 provides a sketch of one of the most important fea-

tures of the Columnar service’s JSON database engine – namely, its

unique binary columnar data representation, AMAX [11], for stor-

ing collections of JSON data objects.The �gure shows roughly how

AMAX infers and separates the schema information for a collection

from the data values of its objects in an LSM-based storage world.

When new data is added to the primary index in that world, it �rst

goes into the index’s in-memory LSM component. When that com-

ponent �lls, it will be �ushed and will become the index’s newest

immutable disk component. During this phase of the component’s

lifecycle, when the data is �ushed, the schema of its content will be

observed and recorded once for the component. Also, at this time,

the component’s data content will be transformed into AMAX’s

generalized columnar JSON format, as indicated in caricature form

at the bottom of Figure 8.

5.2 Compute-Storage Separation and Scaling

Figure 9 provides a high-level view of Capella Columnar’s compute-

storage separated architecture and how it enables a cluster to be

scaled up (or down) to adjust the query performance that is cur-

rently deliverable by the cluster. The lower section of Figure 9 shows

the storage partitions of a hypothetical eight-partition collection at

rest in the service’s underlying internal object storage. The upper

left section shows a one-node cluster, with all of the collection’s

storage partitions being assigned to this one compute node, and

with the time required to execute a particular query being 2 seconds.

The upper right section shows the impact of doubling the cluster’s

size. Each node of the resulting two-node cluster is now responsible

for querying half as many storage partitions, leading to twice the

query performance. It is important to note that in reality these

numbers are much higher; by default each collection is partitioned

Partitioned local storage approach

" Hashed on primary key (PK)

" Primary index w/ PK + record

" Secondary index(es) with SK + PK

" Record updates are always local

&

Figure 7: Partitioned Storage and Indexing.



LSM

{ "name": "John", "phone": [ { "number": "555-7777" } ] }

{ "name": "Max",  "phone": [ { "type":   "cell",     "number": "555-8888" },

{ "type":   "landline", "number": "555-9999" }] }

Inferred Schema Metadata Page

Data Page

Inferred Schema and Data 

Columns are stored separately 

in each LSM component

Data Columns

Figure 8: Columnar JSON Storage Format.

into 128 storage partitions to facilitate scaling via parallelism and

e�ective load balancing.

In terms of its database architecture, Columnar is essentially a

shared-nothing/shared-disk hybrid system. The data resides in its

internal object storage and is accessible by all nodes in a shared-

disk-like sense. S3 and GCS are the two �avors of object store that

will be used, depending on the cloud platform on which the service

is deployed. However, at any given point in time, the system actually

runs in shared-nothing mode, with reading and writing from and

to a given storage partition being the responsibility of exactly one

compute node, as indicated in Figure 9. This responsibility can be

reassigned in the event of failures or scaling operations.

Columnar supports virtually unlimited storage by leveraging

the cloud object store for remote storage. To minimize latency

between compute nodes and remote storage, each node has a local

NVMe cache with limited capacity. When it nears capacity, a novel

column-oriented eviction policy is triggered. The policy selectively

evicts infrequently accessed columns, prioritizing the retention of

columns frequently accessed by theworkload. If there is no available

space in the local cache for hot data, reads and writes occur directly

with the remote store. When space becomes available in the local

s3://some_tenant_cluster/storage

Figure 9: Compute-Storage Separation.

cache (e.g., if a hot data collection is dropped), frequently accessed

data will be re-cached when it is next read from remote storage.

5.3 MPP Query Processing

Query execution in Capella Columnar uses partitioned parallelism,

a.k.a. MPP, to execute analytical queries quickly and in a manner

that can scale horizontally with the current size of the cluster.

Figure 10 shows an example of MPP-based query execution for

a GROUP BY aggregate query. In the �rst phase of query execution

the compute nodes perform, in parallel, local grouped aggregation.

The results from the �rst phase are then repartioned by hashing

on the grouping key to ensure that all the information for a given

groupwill land on the same node as input to the second phase. Then,

in the second phase, the nodes work in parallel to compute the �nal

aggregate values for their assigned groups. More information about

parallel query processing and the algorithms used for selection,

projection, joins, sorts, aggregation, grouping, and windowing can

be found in [26], as the Columnar query engine, like Couchbase

Analytics’ query engine, is from Apache AsterixDB [3, 15].

5.4 Cost-Based Query Optimization

Capella Columnar’s approach to cost-based query optimization

(CBO) is based on sampling. For each collection, the query engine

also keeps a small, �xed-size random sample of the collection for use

in cardinality and cost estimation at query compile time. Users run

ANALYZE statements to periodically refresh the samples. When

a collection is analyzed, its cardinality is also recorded. Then, to

choose an execution strategy for a SQL++ query that involves the

collection, its sample’s contents, along with its cardinality, provide

the information needed by CBO for query planning.

Figure 11 shows this for a simple example query. The query in-

volves two collections, each with various selection predicates, as

well as a join predicate. The query optimizer identi�es which pred-

icates go with which collection and runs single-collection queries

against the samples to determine the numbers of documents that
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Figure 10: Partitioned Parallelism (MPP).

satisfy their parts of the query criteria. The results are then up-

scaled to estimate the cardinalities when the query is run against

the actual collections. This allows Columnar CBO to estimate cardi-

nalities for a wide range of otherwise di�cult predicates, including

LIKE predicates, predicates involving expressions and function calls,

and predicates on nested document data. Samples are also used for

join optimization, e.g., to estimate the number of distincts in join

columns, and when the underlying tables are su�ciently small or

a join predicate is complex, their samples are joined. This use of

compile-time sampling is unique in the document database world.

5.5 External Collection Access

Figure 12 illustrates the process involved in querying an external

collection whose data lives in an external object store rather than

being stored and managed by Capella Columnar. The scenario

shown involves myExternalCollection, an external collection of

review data residing in temporally-organized �les in object storage.

The CREATE EXTERNAL COLLECTION statement includes a PATH

speci�cation that indicates that the organization is a hierarchy

involving the year, quarter, and month of the underlying data. The

PATH speci�cation also indicates the data types involved in the

path, and the presence of a parameterized path (or "dynamic path")

will cause objects in the collection to appear to have �elds year,

quarter, and month, each of whose values will be dynamically

determined at runtime based on where in the hierarchy an object

is found. When a query against this collection is compiled and

executed, this path information can be matched against the query’s

predicates and used to avoid accessing �les in unnecessary "folders".

We also exploit the scan optimizations available for each data format,

and parallel processing is applied when the data from an external

collection is being accessed by a query.

5.6 Performance

To provide a brief look at Capella Columnar’s performance, we

share some results that were obtained from running a mixed noSQL

workload benchmark, CH2++ [6, 17], with transactions on a Capella

Operational cluster feeding data to a set of analytical queries involv-

ing 11 indexed shadow collections on a Capella Columnar cluster.

CH2++ is a JSON-i�ed descendent of CH [22], a relational HTAP

benchmark that mixes TPC-C transactions and TPC-H analytics.

SELECT o.orderno, o.order_date, c AS cust

FROM customers AS c, orders AS o

WHERE c.custid = o.custid

AND c.address.city LIKE '%MA'

AND (SOME i IN o.items

SATISFIES i.qty * i.price > 500.00)

ORDER BY o.order_date DESC 

LIMIT 100;

SELECT COUNT(*)

FROM customers_sample AS cs

WHERE cs.address.city LIKE '%MA'

SELECT COUNT(*)

FROM orders_sample AS os

WHERE (SOME i IN os.items

SATISFIES

i.qty * i.price > 500.00)

customers
orders

CBO

Figure 11: Cost-Based Optimization using Samples.



CREATE EXTERNAL COLLECTION myExternalCollection

ON `myReviewsContainer`

AT myExternalLink

PATH "reviews/{year: int}/{quarter: string}/{month: string}"

WITH {"format": "json"};

Figure 12: Querying External Collections.
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Figure 13: Query Power vs. Operational Load

Figure 13 shows the geometric mean response time (Query Power)

for CH2++’s 22 analytical queries with 4 and 8 transactional nodes

(4T, 8T) feeding 2, 4, and 8 analytical query nodes (2A, 4A, 8A) using

a 1000-warehouse database instance (≈ 550ăþ of data). We see that

query performance scales linearly with the Columnar cluster size.

Table 1 shows the bene�t of the columnar storage format for collec-

tions. Compared to an earlier (and still selectable) row-based format

option, query performance is doubled, while ingestion performance

(measured while shadow collections were loading) is only slightly

slower due to the cost of parsing and shredding the incoming data.

5.7 Di�erentiation

There are quite a few cloud data warehouses and data lakes today.

Redshift [13] and Snow�ake [23] are two key warehouse services.

Table 1: Storage Format Performance Impact (4T+4A)

Storage Avg. Data Geo. Mean Query

Format Ingestion Rate Query Time Throughput

Column 200.6k obj/sec 26.06 sec 106.85 qry/hr

Row 214.1k obj/sec 55.81 sec 55.72 qry/hr

Both of these warehouse services are relationally focused (i.e., based

on SQL, tables, and prede�ned schemas) and treat JSON as a column

type. DeltaLake [12] is a leading data lake service for organizing

and analyzing �les in object storage. Parquet, its preferred format,

supports nesting, but DeltaLake expects �le data to have uniform

schemas. Atlas [5] is a leading JSON-based cloud service, but it is

optimized for transactional use, not analytics. Capella Columnar is

unique in its focus on JSON and its treatment of other data models

as subsets of JSON. Its schema �exibility allows data to be analyzed

in its natural form (i.e., there is no ETL mandate). Columnar allows

data to be brought together eagerly and/or lazily from disparate

remote systems, in cross-queryable (with SQL++) JSON form.

6 CONCLUSION

In this paper we have presented Couchbase’s Capella Columnar

service, a service that is uniquely suited to performing large scale

JSON data analytics. We covered the kinds of collections that it

supports, its SQL++ language, its view and function support, its

relational BI tool interoperability, its compute-storage-separation,

its columnar storage, its parallel query runtime, its sample-based

query optimizer, and its paths for ingesting and querying data from

diverse sources. Space has precluded diving into these topics more

deeply, but we hope that readers have found this overview valuable.
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